
i

An Evaluation of Bottleneck Bandwidth Round Trip Time for

Improved Congestion Control in Diverse Network Environments

Jonathan Starkey

2019

BSc Computing Final Year Project

Bournemouth University

Faculty of Science & Technology

Department of Computing and Informatics

Bournemouth University, Department of Computing and Informatics, Final Year Project

Abstract

This project will compare other TCP congestion control algorithms alongside Bottleneck

Bandwidth and Round-trip propagation time (BBR), to discern where the BBR algorithm

could be applied constructively, and evaluate in a range of environments the algorithm’s

behaviour with regard to attributes commonly measured with research into similar trans-

port protocols evaluations (throughput, fairness, adaptability etc).

Using network simulator 3 (ns-3) the project replicated published results before building

a framework for BBR evaluation and mimicking complex network environments with dif-

ferent networking attributes (number of flows, rates of traffic, paths of traffic). With further

work the paper could also research the implementation of the BBR algorithm in a range

of modern networking environments (mobile, tethering etc).

This paper draws on the history of TCP and importance of congestion control in net-

works. Successfully, this paper highlights the experiences of BBR on given network

topologies. Evaluating throughput and fairness BBR simulations are set up alongside

CUBIC and NewReno simulations enabling critical analysis of the BBR algorithm and

critique of its performance compared to CUBIC and NewReno.

ii

Dissertation Declaration

I agree that, should the University wish to retain it for reference purposes, a copy of my

dissertation may be held by Bournemouth University normally for a period of 3 academic

years. I understand that once the retention period has expired my dissertation will be

destroyed.

Confidentiality

I confirm that this dissertation does not contain information of a commercial or confiden-

tial nature or include personal information other than that which would normally be in the

public domain unless the relevant permissions have been obtained. In particular any in-

formation which identifies a particular individual’s religious or political beliefs, information

relating to their health, ethnicity, criminal history or sex life has been anonymised unless

permission has been granted for its publication from the person to whom it relates.

Copyright

The copyright for this dissertation remains with me.

Requests for Information

I agree that this dissertation may be made available as the result of a request for infor-

mation under the Freedom of Information Act.

Signed:

Name: Jonathan Paul Starkey

Date:

Programme: BSc Computing

iii

Original Work Declaration

This dissertation and the project that it is based on are my own work, except where stated,

in accordance with University regulations.

Signed:

iv

Contents

1 Introduction 1

1.1 Problem Definition . 1

1.2 Problem Objectives . 2

1.2.1 Objectives, aims and success criteria 2

1.3 Research Rationale . 4

1.4 Project Plan . 4

1.5 Risk Analysis . 5

2 Background Study 6

2.1 TCP Congestion Control . 6

2.1.1 TCP Underlying Algorithms . 7

3 Literature Review 9

3.1 Delay Based Congestion Control . 9

3.2 Loss Based Congestion Control . 11

3.2.1 Active Queue Management (AQM) 11

3.2.2 Explicit Congestion Notification (ECN) 13

3.2.3 Congestion Based Congestion Control 13

3.3 Bandwidth . 14

3.3.1 Ethernet (single flow) . 15

3.3.2 Wireless . 16

3.4 Fairness . 16

3.4.1 Intra protocol flows . 18

3.4.2 Inter protocol flows . 19

3.5 Reaction to network changes . 21

3.5.1 New flows joining the network . 22

4 Methodology 26

4.1 Development Methodology . 26

4.1.1 Available Methodologies . 26

4.1.2 Chosen Methodology . 27

v

vi CONTENTS

4.2 Development Software . 27

5 Analysis and Design 28

5.1 Topologies . 28

5.1.1 Line Topology . 28

5.1.2 Modified Line Topology . 28

5.1.3 2 by 2 Horizontal Dumbbell . 29

5.1.4 2 by 2 Vertical Dumbbell . 29

5.1.5 3 by 3 Horizontal Dumbbell . 30

5.1.6 Line Topology - One New Flow . 30

5.1.7 Line Topology - Two New Flows . 31

5.2 Coding . 31

5.2.1 Simulation Coding . 32

5.2.2 Results Coding . 32

6 Results 34

6.1 Replication of Results . 34

6.1.1 BBR - Claypool . 34

6.1.2 BBR - Shiyao . 35

6.1.3 Cubic and NewReno . 36

6.2 Bandwidth . 40

6.3 Fairness . 45

6.3.1 Delayed Joining Flows . 53

6.3.2 Multiple Joining Flows . 59

6.4 Summary . 62

6.4.1 Results . 62

6.4.2 Artefact . 63

7 Conclusion 64

7.1 Evaluation . 64

7.2 Future Work . 65

Appendices 69

Bournemouth University, Department of Computing and Informatics, Final Year Project

List of Figures

2.1 TCP Slow Start and Congestion Avoidance 8

3.1 TCP Reno undergoing congestion window resizing 12

3.2 BBR - Kleinrock’s (A) Optimal Point for Inflight Data 14

3.3 BBR Global Ethernet Results (Tongyu Dai, 2018) 15

3.4 BBR 4G mobile Results (Tongyu Dai, 2018) 16

3.5 BBR 4G LTE Results (Claypool, 2018) . 17

3.6 50-ms RTT Average Goodput 87.3 Mbps, 10-ms RTT Average Goodput

6.3 Mbps (Shiyao, 2017) . 18

3.7 IETF 99 Update of BBR convergence (Cardwell, July 2017) 19

3.8 Slide 16 - Throughput vs Time (Cardwell, 2017) 20

3.9 Slide 17 - Throughput vs Time (Cardwell, 2017) 21

3.10 Slide 18 - Throughput vs Time (Cardwell, 2017) 22

3.11 BBR adapting to network changes (Scholz, 2017) 23

3.12 BBR adapting to new flows (Cardwell, 2016) 24

3.13 BBR adapting to new flows in relation to Probe RTT of existing flows (Scholz,

2017) . 24

3.14 BBR adapting to new flows during and after Probe RTT of existing flows

(Scholz, 2017) . 25

5.1 Line topology (3 nodes) . 28

5.2 2 competing flows - modified line topology 29

5.3 2x2 horizontal dumbbell topology . 30

5.4 2x2 vertical dumbbell topology . 30

5.5 3x3 horizontal dumbbell topology . 31

5.6 Introducing a new flow . 31

5.7 Introducing multiple new flows . 32

6.1 Claypool Replication Results . 35

6.2 Shiya Replication Results . 36

6.3 Claypool Replication Results CUBIC . 37

vii

viii LIST OF FIGURES

6.4 Claypool Replication Results NewReno . 38

6.5 Shiya Replication Results CUBIC . 39

6.6 Shiya Replication Results NewReno . 40

6.7 Results for One vs One Horizontal Dumbbell over BBR 41

6.8 Results for One vs Two Horizontal Dumbbell over BBR 42

6.9 Results for One vs One Vertical Dumbbell over BBR 43

6.10 Results for One vs One Vertical Dumbbell over CUBIC 44

6.11 Results for 3 flow 3x3 Dumbbell over BBR 45

6.12 Results for One vs One Horizontal Dumbbell over BBR 46

6.13 Results for One vs Two Horizontal Dumbbell over BBR 47

6.14 Results for One vs Two Vertical Dumbbell over BBR 48

6.15 Results for 3 flow 3x3 Dumbbell over CUBIC 49

6.16 Results for 3 flow 3x3 Dumbbell over NewReno 50

6.17 Results for joining flow on node 2 over BBR 51

6.18 Results for joining flow on node 2 over CUBIC 52

6.19 Results for joining flow on node 2 over NewReno 53

6.20 Results for 200ms delayed joining flow joining on node 2 running BBR . . . 55

6.21 Results for 400ms delayed joining flow joining on node 2 running BBR . . . 56

6.22 Results for 600ms delayed joining flow joining on node 2 running BBR . . . 57

6.23 Results for 800ms delayed joining flow joining on node 2 running BBR . . . 58

6.24 Results for 1000ms delayed joining flow joining on node 2 running BBR . . 59

6.25 Results for joining flows on nodes 1 and 2 running BBR 60

6.26 Results for joining flows on nodes 1 and 2 running CUBIC 61

6.27 Results for joining flows on nodes 1 and 2 running NewReno 62

1 Original plan time sheet . 81

2 Updated time sheet . 82

Bournemouth University, Department of Computing and Informatics, Final Year Project

Chapter 1

Introduction

The internet provides a platform to serve and consume content through a vast array

of multimedia formats simultaneously. Whilst there is more information on the internet

than any one person can process, the information we desire must be delivered near in-

stantly for a user to consider consuming. Progress to improve the speed and efficiency

of connections is thus never ending, with an increasing number of ever more capable

devices connected to the internet, more diverse and demanding connection conditions

arise. Keeping up with this demand allows business to provide services to more clients

and applies pressure on academics to constantly investigate and experiment with differ-

ent implementations for networking protocols and topologies.

This study investigates and experiments with a proposed new TCP algorithm implemen-

tation named BBR through the use of simulations and theory. Using NS-3 and python this

study aims to provide performance metrics given a range of environmental factors.

Furthermore this document sets out the engineering of such a program so that it may be

repeated, replicated and reproduced as defined by ACM (Bonaventure, 2016) with the

further aim of extension if the algorithm is revised. Featured are details for the require-

ments to tackle such a task and logically justifies the approach and methodology.

The artefact comprises of software solution that can aid network engineers and aca-

demics understand the properties of said new implementation and freely compare with

past and future algorithms, without the expenditure commonly occurred when revising

network architectures.

1.1 Problem Definition

Bandwidth requirements for internet users is greatly increasing across many countries

around the world. However these improvements are irrelevant if the network pipe (the

connection between devices that dictates the maximum bandwidth) is not fully utilised.

Other TCP congestion control algorithms fail to maintain the desired pipe utilisation ca-

1

2 CHAPTER 1. INTRODUCTION

pacity, known as Kleinrock’s optimal operating point (kleinrock, 2979).

As well as data in flight utilisation, TCP congestion control algorithms are responsible

for maintaining data delivery at the edge router. Current the internet suffers from buffer

bloat - large packet queues in router memory due to processor speed or memory capacity

bottlenecks resulting in the drop of incoming packets until the queue clears.

Current TCP implementations are heavily critiqued, whilst some perform well in a

given field no current algorithm dominates in all fields (eg. An algorithm may have high

throughput on Ethernet connections but only because its bandwidth sharing fairness is

very low). Due to how TCP congestion control algorithms have evolved over time, in-

terpretation of congestion means algorithms do not operate sufficiently when sharing

bandwidth.

It is therefore important that BBR be tested in a range of fields to better understand the

strengths and weaknesses when operating in simulations comparable to the real world.

It is only when weaknesses are discovered and fully understood can improvements be

made to the algorithm.

In order to collaborate this effort, a common framework must be shared for researchers

to reproduce and extend the work of others. This investigation focuses on BBR algo-

rithm’s throughput, intra-flow and inter-flow fairness and reactions to changes in the net-

work using open source software written in python and C++.

1.2 Problem Objectives

The following describe the project objectives and provide aims to monitor progress. These

aims act as milestones and allow for retrospective assessment towards the end of the

project. They align with Gnatt charts accessible in the appendix.

1.2.1 Objectives, aims and success criteria

Objective 1 - Research BBR algorithm

Aim 1: Gain understanding of algorithm operation/implementation.

Aim 2: Gain access to sites/groups where BBR discussion occurs.

Success Criteria 1 - Hold an understanding of algorithm operation and current strengths

and weaknesses. Hold an understanding of what other researches are currently investi-

gating.

Objective 2 - Set up a network simulator environment for working with BBR algorithm.

Aim 1: Investigate current open source network simulators.

Aim 2: Investigate possible network simulators compatibility with BBR.

Aim 3: Ensure simulator provides means to modify and create custom networks.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 1. INTRODUCTION 3

Aim 4: Ensure simulator provides means to incorporate other congestion control algo-

rithms.

Aim 5: Ensure simulator can replicate results already published.

Success Criteria 2 - Have a simulator that can run BBR alongside previous TCP conges-

tion control algorithms and be able to create custom network configurations using said

simulator.

Objective 3 - Investigate BBR throughput

Dependencies - Objectives 1 and 2 completed first.

Aim 1: Set up custom networks with varying number of flows.

Aim 2: Set up custom scripts to extract results.

Aim 3: Analyse results and compare with published results of others.

Aim 4: Suggestion improvements to BBR algorithm from results.

Success Criteria 3 - Have a number of scripts that replicate the results of others and

produce results for custom environments. Have a list of suggested improvements based

on my findings.

Objective 4 - Investigate BBR inter/intra protocol fairness

Dependencies - Objectives 1 and 2 completed first.

Aim 1: Set up custom networks with varying number of flows.

Aim 2: Set up custom scripts to extract results.

Aim 3: Analyse results and compare with published results of others.

Aim 4: Suggestion improvements to BBR algorithm from results.

Success Criteria 4 - Have a number of scripts that replicate the results of others and

produce results for custom environments. Have a list of suggested improvements based

on my findings.

Objective 5 - Investigate BBR behaviour with varying flow paths

Dependencies - Objectives 1 and 2 completed first.

Aim 1: Set up custom networks with varying number of flow paths.

Aim 2: Set up custom scripts to extract results.

Aim 3: Analyse results and compare with published results of others.

Aim 4: Suggestion improvements to BBR algorithm from results.

Success Criteria 4 - Have a number of scripts that replicate the results of others and

produce results for custom environments. Have a list of suggested improvements based

on my findings.

Objective 6 - Investigate BBR behaviour during network changes

Dependencies - Objectives 1 and 2 completed first.

Bournemouth University, Department of Computing and Informatics, Final Year Project

4 CHAPTER 1. INTRODUCTION

Aim 1: Set up custom networks that allow for run time changes in bottleneck.

Aim 2: Set up custom networks that allow for run time changes in number of flows.

Aim 3: Set up custom networks that allow for run time changes in delayed joining flows.

Aim 4: Analyse results and compare with published results of others.

Aim 5: Suggestion improvements to BBR algorithm from results.

Success Criteria 6 - Have a number of scripts that modify the network during simulation

run time. Compare results with that of published results. Have a list of suggested im-

provements based on my findings.

1.3 Research Rationale

The BBR algorithm is undergoing researched currently at many universities and tech-

nology companies such as Google. As such the majority of theoretical research will be

conducted reading articles. This will also be the source for results when validating the

simulator. Due to its preliminary nature of BBR, the business gain can not be fully re-

searched and the full cost of developing such an algorithm are yet known. However BBR

has gained enough popularity to be included in the Linux kernel since version 4.9 and is

therefore free to implement on supporting Linux machines. The intention of this project

is to support the work already under investigation and to provide a software solution that

would aid in the further research of both BBR and alternative TCP congestion control

algorithms.

Firstly this software solution will feature no financial barrier - it will use open source soft-

ware and scripts will be freely accessible. Running a simulator, it not will require pur-

chasing of additional hardware and will run on most modern computers. This ensures

repeatability, replicability and reproducibility (Bonaventure, 2016). Secondly the software

will be user friendly. The simulator code will be written in C++ and will conform to the

coding conventions set out by ns-3 (NS-3, 2019).

1.4 Project Plan

Gnatts charts can be seen in appendix. These charts detail the time estimations for

deconstructed objectives in chronological order.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 1. INTRODUCTION 5

1.5 Risk Analysis

Table 1.1 in the appendix highlights potential risks during research and suggested solu-

tions.

Bournemouth University, Department of Computing and Informatics, Final Year Project

Chapter 2

Background Study

The following research highlights research currently undertaken in congestion control.

The primary focus will be on the algorithms behaviour in different networking configura-

tions and deriving results for later comparison to the simulation.

2.1 TCP Congestion Control

The mid 1970s featured the arrival of TCP - a transport layer internet suite protocol de-

signed to provide reliability, error checking and ordering via a connection window strategy.

(Vinton, 1974).

In the late 1980s research to improve TCP lead to the addition of congestion control algo-

rithms (Jacobson, 1988) to reduce packet drop rates. The algorithms originally developed

by Jacobson Et al. adhered to one observation: ”The flow on a TCP connection ... should

obey a ’conservation of packets’”. This conservation principle simply states that where a

connection exists, the volume of packets entering the connection must be equal to vol-

ume exiting the connection.

In order to ensure such equilibrium connections can not rely solely on ACK packets (ac-

knowledgement packets that confirm when a packet has been received). Such packets

are sent on the receiving of data and, due to the conservation of packets principle, would

mean the initial connection establishment packets could never be sent. Secondly in the

event that a packet is dropped due to time out or buffer overflow, no ACK packet is re-

ceived. Thus ACK packets alone are not a sufficient indicator for network congestion

control. However early on in TCP, ACK packet monitoring was the main method for con-

gestion detection.

Jacobson Et al. proposes a number of changes to TCP. Using both mean and variation

of round trip time to indicate they calculate suitable time out periods for transmission of

packet. They also set out improvements for congestion window resizing to aid in conges-

tion avoidance. In addition they explain the algorithms that form part of the TCP RFC

6

CHAPTER 2. BACKGROUND STUDY 7

standards - RFC 2581 (Allman, 1999) and RFC 5681 (Allman, 2009) which obsoletes

RFC 2581. At the time however there was no congestion detection, ”Only in gateways, at

the convergence of flows, is there enough information to control sharing and fair alloca-

tion. Thus, we view the gateway ’congestion detection’ algorithm as the next big step”.

2.1.1 TCP Underlying Algorithms

With the further creation of TCP congestion control algorithms came changes to imple-

mentations of slow start, congestion avoidance, fast retransmit, and fast recovery. To

implement these algorithms, two variables are created and stored per connection. Using

the window principle, the congestion window (cwnd) limits the sender data that can be

transmitted into the network pipe before receiving an ACK packet. The receiver’s ad-

vertised window (rwnd) likewise limits the amount of outstanding data at the destination.

Where the minimum of cwnd/rwnd value dictates a bottleneck.

When a TCP connection opens a socket in a network with unknown conditions TCP im-

plementations will slowly probe the network to determine the available capacity, in order

to avoid congesting the network with an inappropriately large burst of data. The slow

start algorithm is used for this purpose at start of a connection establishment, or after

recovering from packet drop. At the beginning of slow start the cwnd is calculated by

exponentially increasing the window size until it exceeds threshold. Over time as the

connection continues to successfully send packets the cwnd is increased additively. As

the receiver successfully acknowledges packets, so too does the rwnd (receiver window)

grow. Similarly when packet loss is detected the cwnd is reduced to allow congestion to

alleviate.

Distinct implementations of TCP modify the rate of adjustment of cwnd and rwnd dif-

ferently, usually as a result of what environments an implementation wishes to target:-

Low latency, high bandwidth, equal fairness. Additive Increase/Multiplicative Decrease

(AIMD) refers to the behavior of these algorithms when resizing the cwnd. Take this ex-

ample (Sangtae Ha, 2005) with TCP NewReno additive increase of cnwd per ACK:

”For instance, if the bandwidth of a network path is 10 Gbps and the RTT is 100 ms,

with packets of 1250 bytes, the BDP of the path is around 100,000 packets. For TCP to

grow its window from the midpoint of the BDP, say 50,000, it takes about 50,000 RTTs

which amounts to 5000 seconds (1.4 hours). If a flow finishes before that time, it severely

under-utilizes the path.”.

This example highlights that particular algorithms may only be suited for particular net-

work environments, a consideration that must be factored when designing simulations

later in the project.

Another per connection variable is the slow start threshold (ssthresh). This variable is

Bournemouth University, Department of Computing and Informatics, Final Year Project

8 CHAPTER 2. BACKGROUND STUDY

Figure 2.1: TCP Slow Start and Congestion Avoidance

used to determine whether the slow start or congestion avoidance algorithm is used. By

setting ssthresh to the largest available window size and reducing it when congestion

occurs, the network dictates the maximum slow start threshold size and provides cwnd

with a target value. Whilst cwnd is less than ssthresh TCP algorithms stay in slow start

and continue to increase the window size. When cwnd is more than or equal to ssthresh,

algorithms must enter congestion avoidance. This interaction can be see in figure 2.1

(Wikimedia commons, 2014).

Fast retransmit and fast recovery work together. The fast retransmit algorithm uses the

arrival of 3 duplicate ACKs as an indication that a segment has been lost. After receiv-

ing 3 duplicate ACKs, the cwnd undergoes multiplicative decrease and retransmission

of the perceived missing segment occurs. 3 duplicate ACKs is required to avoid misin-

terpretation between the source and destination nodes, as the process for re-ordering

out-of-order packets at the destination spews multiple ACKs.

After the retransmitted packet is sent the ”fast recovery” algorithm manages the trans-

mission of packets until a non-duplicate ACK arrives. Essentially this process regards

the number of duplicated ACKs as a sign of packet arrival at the receiver, something we

know is true from the conservation of packets principle. TCP processes these additional

duplicate ACKs as if they had acknowledged data correctly, the sequence number is up-

dated and subsequent packets can now be sent, in the expected order.

Using the fast retransmit and fast recovery an algorithm can reduce the cwnd, allow con-

gestion to alleviate and continue transmitting packets - the connection does not have to

undertake another slow start phase.

Bournemouth University, Department of Computing and Informatics, Final Year Project

Chapter 3

Literature Review

The following research highlights research currently undertaken in congestion control.

The primary focus will be on the algorithms behaviour in different networking configura-

tions and deriving results for later comparison to the simulation.

3.1 Delay Based Congestion Control

Delay based refers to one such technique of congestion control. With delay based im-

plementations measurements record the expected and actual round trip times to indicate

congestion based on the presence of delay. One example of TCP Delay based con-

gestion control algorithms is TCP Vegas. ”Vegas measures congestion at a link by its

queueing delay, and that of a path by the end–to–end queueing delay (without propaga-

tion delay). A Vegas source computes the queueing delay from the round trip time and

the estimated propagation delay, and attempts to set its rate to be proportional to the ratio

of propagation to queueing delay” (Low, 2000).

TCP Vegas measures the difference between expected and actual throughput (δ) based

on RTT delays. When δ is lower than a low threshold (α), the path is not congested and

the sending rate in increased. When δ is larger than an upper threshold (β), the sending

rate is reduced to alleviate any congestion. If δ is between α and β Vegas maintains

the current sending rate. To calculate the expected throughput Vegas divides the current

congestion window by the minimum RTT, which contains the delay if there is currently

no congestion. For each round trip time, TCP-Vegas computes the actual throughput by

dividing the number of packets sent by the sampled RTT. TCP Vegas is highly suited for

environments demanding low packet loss. ”Vegas’ strategy is to adjust the source’s send-

ing rate (congestion window) in an attempt to keep a small number of packets buffered in

the routers along the transmission path” (Low, 2000).

In Low’s paper NS-2 simulator and a dumbbell topology are used to model, compare and

evaluate TCP Vegas. Using the dumbbell topology and ftp servers on each node pair,

9

10 CHAPTER 3. LITERATURE REVIEW

Lows configuration has a number of benefits:- All flows will have the same path distance,

sharing the bottleneck allows for fairness measurements, measurements can be taken

before and after the bottleneck (ie at each router), ACK packets must travel the inverse of

the route on return (symmetric), the option for flows to have staggered start or start in uni-

son and furthermore additional bottlenecks can be applied between nodes and routers.

Low provides the simulation environmental variables and compares the results with an

expected model, however there is no justification for the chosen values or explanation

of the model. There is also no provision of NS-2 scripts. Low finds the simulation be-

haves as per the model. ”The model predicts that all connections receive an equal share

(1200KBps) of the bottleneck link and the simulations confirm this.” (Low, 2000). During

the investigations for this project similar simulation validation must occur. This project will

likewise provide environmental variables supplemented with justification.

Low details the benefit of a delay based algorithm by comparison to a loss based algo-

rithm TCP Reno. Vegas’ delay based algorithm will not cause packet loss once a con-

nection has reached equilibrium, due to its nature of measuring RTT for congestion. Low

states ”This is in contrast to TCP Reno which constantly probes the network for spare

capacity by linearly increasing its window until packets are lost, upon which the window

is multiplicatively decreased. Thus, by carefully extracting congestion information from

observed round trip time and intelligently reacting to it, Vegas avoids the perpetual cycle

of sinking into congestion and recovering from it.” This is a key delimiter between delay

based and loss based congestion control and again highlights that particular algorithms

may only be suited for particular network environments.

The paper also discusses the use of Random Exponential Marking (REM) alongside Ve-

gas. ”REM is a congestion control mechanism ... consists of a link algorithm and a source

algorithm. The link algorithm computes the link price and feeds it back to sources through

packet marking.” REM is an example of an active queue management algorithm. AQM

algorithms are discussed in further section of this document.

FAST, another delay based congestion control, determines the current congestion win-

dow size given the round-trip delays and packet losses over a path. FAST uses a rate-

pacing multiplier to update the sending rate after every other RTT. FAST estimates the

queuing delay of the path using RTTs and if the delay is well below a threshold, it in-

creases the window aggressively and if it gets closer to the threshold, the algorithm slowly

reduces the increasing rate. This is similar to the behaviour exhibited by TCP Reno in

figure 3.1. When the delay increases beyond the threshold: first FAST slowly decreases

the window and then aggressively decreases the window. For packet losses however

FAST behaves like loss based algorithms, halving the congestion window and enters loss

recovery.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 11

3.2 Loss Based Congestion Control

Loss based congestion control refers to another technique used for congestion control.

With loss based congestion control algorithms the focus is primarily on detecting packet

loss as the congestion signal.

“About 30,000 Internet web servers, only 3.31% to 14.4% of web servers are still using

TCP Reno, whereas, 14.5% to 25.66% are using TCP Compound and 46.92% are using

TCP CUBIC.” (Mudassar Ahmad, 2018). As stated the majority of TCP implementations

currently running are all loss based. Packet loss is indicated either through monitoring of

packet return time against RTT, thus indicating a time out, or by recording the sequence

of ACKs of packets sent around the same time as the suspected lost packet.

TCP CUBIC is derived from Binary Increase Congestion control (BIC), an algorithm with

focus on stability and scalability. CUBIC is the most commonly used algorithm, as pre-

viously stated by Ahman et. al. above, featuring improvements over BIC most notably

its cubic functions for window resizing - an explanation for the ’CU’ in CUBIC. “Instead

of a linear increase, CUBIC TCP uses a cubic function. The inflection point of the cubic

function is usually shifted to the value on which the last packet loss occurred. This means

that the slope of the function is very low around this point but increases with distance to

this point. This leads to an improved scalability. Instead of 0.5 (Reno) CUBIC TCP re-

duces its CWnd merely to a factor of 0.7 after a packet loss.” (Mark Hock, 2017). CUBIC

is another example of a TCP algorithm developed for specific networking environments.

Figure 3.1 shows the congestion window resizing of a connection over TCP Reno (Tanen-

baum, 2011). A number of TCP algorithms exist and the behaviour they exhibit is heavily

dictated by their adaptation of the congestion window. A common theme is to reduce

the window size by 0.5, as stated by Hock and seen in Tanenbaum’s graph. This image

resembles 2.1, but shows the TCP states specific to Reno.

3.2.1 Active Queue Management (AQM)

Active queue management was introduced as a proposed solution to complement the

congestion avoidance algorithms RFC 2309 section 1 (Braden, 1998). AQM was de-

signed to address two major issues:- Lock-out and full queues.

Lock out occurs when a number of original connections fully occupy the queue, a new

connection arrives but is unable to successfully append packets to the already full queue

and as a result the original connections monopolize the queue space. The reason for

such a situation lies in the routers behaviour when the queue is full. Routers undergo ’tail

drop’ when the queue is full, dropping incoming packets that can not fit in the buffer. This

is known as passive queue management (PQM). Lock-out can be solved with the use

of two alternative queue disciplines ”random drop on full” or ”drop front on full”. Under

Bournemouth University, Department of Computing and Informatics, Final Year Project

12 CHAPTER 3. LITERATURE REVIEW

Figure 3.1: TCP Reno undergoing congestion window resizing

the ’random drop on full’ discipline, a router drops a randomly selected packet from the

queue, rather than the incoming packet, providing space for the newly arrived packet.

Likewise the ’drop front on full’ discipline drops the front most packet in the queue to

provide the required queue space for the newly arrived packet. Both of these solve the

lock-out problem.

Full queues occur when the router’s buffer is fully utilised. Not only do full queues lead to

packet drop and lock-out it also causes increased delay for all other connections sharing

the buffer. Due to the nature of internet traffic, full queues can often cause packet drops

when a burst of traffic arrives to the network without adequate buffer storage space. AQM

resolves the issue of full queues (and lock outs) by running on the receivers router and

prematurely dropping packets before the queue is full. Whilst using or not using AQM re-

sults in packet loss, not using AQM would result in more packets dropped when a queue

does overflow, impacting the congestion model for every connection that processes the

packet drop as congestion.

A further side effect of such heavy packet loss at full buffer utilisation, something miti-

gated by AQM, is the possibility of congestion control synchronisation. If a number of

connections were to receive a loss signal at the same time, theoretically they would enter

slow start (or similar such mechanism) simultaneously, an undesired effect (Baker, 2015).

AQM selects packets to be dropped allowing for more educated processing than simply

the first, last or random packet. This selection process could be used to target based on

quality of service (QoS) or to target aggressive connections that appear to not be using

congestion avoidance or are presenting unfairness to other connections in some way.

Active queue management can separate policies of queuing or dropping packets from the

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 13

policies for indicating congestion. Routers running AQM use the Congestion Experienced

(CE) codepoint in a packet header as an indication of congestion, instead of relying solely

on packet drops. This has the potential of reducing the impact of loss on latency-sensitive

flows (Ramakrishnan, 2001).

3.2.2 Explicit Congestion Notification (ECN)

AQM uses CE codepoint only when using ECN. ’CE packet’ is used to denote a packet

that has the CE codepoint set. The use of the CE codepoint in ECN allows the TCP

connection source to receive the packet, reducing the potential for excessive delays due

to both retransmission and the subsequent resizing of cwnd thereof. Such a codepoint

exists at bits 6 and 7 in the IPv4 header TOS field. ”Upon the receipt by an ECN-Capable

transport of a single CE packet, the congestion control algorithms followed at the end-

systems MUST be essentially the same as the congestion control response to a *single*

dropped packet. For example, for ECN-Capable TCP the source TCP is required to halve

its congestion window for any window of data containing either a packet drop or an ECN

indication.” (Ramakrishnan, 2001).

3.2.3 Congestion Based Congestion Control

BBR takes an alerted approach to other TCP algorithms and as such can not be defined

under loss or delay based approaches. Mark (Hock, 2017) proposed “congestion-based”

in contrast to loss based or delay based. Whereas loss based congestion control requires

packet loss, BBR tries to match the bottleneck in an attempt not to cause packet loss

by keeping in flight data at kleinrock’s optimal operating point (see figure 3.2). Hock

also states ”BBR is neither delay-based nor loss-based and it ignores packet loss as

congestion signal. It also does not explicitly react to congestion, whereas congestion

window-based approaches often use a multiplicative decrease strategy to reduce (data

in flight)”. However BBR can still compare to other TCP algorithms as BBR must still

implement the underlying TCP algorithms in discussed previously in subsection 2.1.1.

For example, the slow start phase for bandwidth probing, called ’startup’ in BBR, likewise

to other algorithms doubles the sending rate per round trip until a queue occurs. Where

relevant this document will highlight differences in implementations in order to evaluate

BBR against other algorithms.

Bournemouth University, Department of Computing and Informatics, Final Year Project

14 CHAPTER 3. LITERATURE REVIEW

Figure 3.2: BBR - Kleinrock’s (A) Optimal Point for Inflight Data

3.3 Bandwidth

Bandwidth utilisation, notably throughput, is one factor that TCP algorithms aim to im-

prove. The problem plaguing bandwidth utilisation is the inability to achieve a balance

between full pipe utilisation and over saturation leading to back off and further under util-

isation. Often this utilisation must occur whilst competing flows exist, making changes to

available bandwidth. Every algorithm has a different approach to bandwidth utilisation.

BBR enters a state known as ”ProbeBW”. In ProbeBW BBR undertakes gain cycling.

Gain cycling ”helps BBR flows reach high throughput, low queuing delay, and conver-

gence to a fair share of bandwidth” (Internet Congestion Control Research Group, 2017).

This process is a continuous cycle intended to dynamically control pacing rate, using the

pacing gain with values: 1.25, 0.75 and 1.

To start the pacing gain is set to 1.25 for the duration required to make this change to all

transmitting traffic. This probing checks for more available bandwidth for the duration of

one RTT or until packet loss. To mitigate this influx, pacing rate is set to 0.75 (as pacing

gain of 1 is equal to the bottleneck bandwidth, 1.25 pacing results in a queue) for the

duration again of one round trip and the queue is drained. A pacing rate of 1 to maintain

data inflight at the bottleneck bandwidth and provide a number of states (6 at pacing rate

of 1) for gain cycle randomisation.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 15

Figure 3.3: BBR Global Ethernet Results (Tongyu Dai, 2018)

3.3.1 Ethernet (single flow)

Tongyu Dai Et al. (2018) published results (figure3.3) of a number of non competing

sender nodes in different countries running different TCP algorithms. Figure 3.3 shows

the average throughput and RTT for five countries over 300 seconds. It is clear that

CUBIC trumps BBR in throughput for every country and likewise BBR trumps Vegas.

However all algorithms remain competitive in RTT. Whilst such an experiment provides

valuable results, such a setup (over multiple countries) does not allow for traffic monitor-

ing at multiple hops along the way, nor does it provide a custom network for alternative

configurations or replication.

Hock Et al. research found that ”The intended behavior of BBR can be nicely ob-

served if only a single flow is active at the bottleneck link... (one) BBR flow can fully

utilize the provided link capacity. However, throughput drops occur regularly (every 10s),

caused by the ProbeRTT phase.” Figure 4 of Hock’s paper supports this statement.

When conducting tests Hock provides all the framework to replicate the results and justi-

fications throughout. Hock uses the dumbbell topology, testing both 1Gbps and 10 Gbps

links. Hock’s results also highlight the ’goodput’ of BBR in figures 7 and 8 of their paper.

Goodput is a measure of throughput minus any retransmitted packets and overhead, and

is an important statistic to measure the sending success rate of an algorithm. Hock finds

that a single BBR flow behaves as per the models expectations with both large and small

buffers. ProbeBW and ProbeRTT phases, and subsequent effects, are both apparent in

the results graph.

Bournemouth University, Department of Computing and Informatics, Final Year Project

16 CHAPTER 3. LITERATURE REVIEW

Figure 3.4: BBR 4G mobile Results (Tongyu Dai, 2018)

3.3.2 Wireless

Tongyu Dai Et al. (2018) published results displaying that BBR performs similarly to

Cubic, in terms of both throughput and delay (3.3). However Vegas performs best in

4G mobile network, obtaining 1.3× throughput in comparison to BBR and Cubic (3.4).

The results are presented as averages from a 10 minute recording ”on the Fourth Ring

Road of Beijing and employed a laptop connected with a 4G mobile to investigate BBR,

Cubic and Vegas”. This experiment represents true use cases that would occur when

connected to wireless networks:- 4G mobile internet, moving target, user equipment han-

dovers occurring, user equipment contained within a car and downloading for a duration

of 10 minutes. However the experiments are not repeated and due to the exact nature of

the ring road and lacking details on the exact route and distance between senders and

receivers, are unlikely to be replicable or reproducible by others.

Claypool Et al. (2018) also published results for wireless networks, using the simula-

tion software NS3. They compare BBR prime (AKA ”BBR’” - the BBR implementation for

NS3) to CUBIC. Figure 3.5 shows three figures from their paper. The top figure shows

the topology used. The second figure shows the throughput and RTT against time. In this

second figure we see that BBR’ is comparable in average throughput but outperforms CU-

BIC, with almost half the average RTT. In the bottom figure we see throughput and RTT

again but against user equipment distance. Again BBR’ outperforms CUBIC in terms of

throughput and significantly trumps CUBIC in regards to RTT when the user equipment

is moving further away from the source.

3.4 Fairness

Fairness is an attribute assessed when TCP algorithms share the bandwidth. Fairness,

ideally, dictates that all flows sharing bandwidth must do so evenly. A simple example:

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 17

Figure 3.5: BBR 4G LTE Results (Claypool, 2018)

Two flows should share 50% whereas three flows would expect to share 33.33%. BBR

claims it ”converges toward a fair share of the bottleneck bandwidth whether competing

with other BBR flows or with loss-based congestion control” (Cardwell, 2016).

Tongyu Dai (2018) results lead to the findings that ”When the queue size is small, TCP is

starved by BBR. The small queue size limits TCP to accumulate packets so that packet

loss occurs quickly. Once TCP halves its congestion window in front of packet loss, BBR

grabs remainded bandwidth to starve it. In contrast, when the queue size is large, TCP

starves BBR. TCP is always trying to fulfill network queue until packet loss occurs. Even

it halves its window size sometimes, the number of inflight packets are still much larger

than BDP, resulting in starving BBR.”

To better understand the fairness of BBR, the following two subsections discuss BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

18 CHAPTER 3. LITERATURE REVIEW

Figure 3.6: 50-ms RTT Average Goodput 87.3 Mbps, 10-ms RTT Average Goodput 6.3

Mbps (Shiyao, 2017)

fairness between BBR flows and again between BBR and other flows running alternative

TCP implementations.

3.4.1 Intra protocol flows

Intra flow is the presence of competing flows baring the same TCP algorithm.

Shiyao Ma Et al. (2017) researched intra flow behavior of BBR and noted that ”a BBR flow

with longer RTT dominates a competing flow with shorter RTT ... We blame it on BBR’s

connivance at sending an excessive amount of data when probing bandwidth. Specifi-

cally, the amount of data is in proportion to RTT, making long RTT flows overwhelming

short ones”. The paper shows goodput over a 100Mbps bottleneck occupied by two BBR

flows with RTTs of 50 and 10 milliseconds. Supporting their statement, the 10ms flow

averages only 6.3Mbps whereas the 50ms flow averages 87.3 Mbps (see figure 3.6).

Further experiments, all of which use the dumbbell topology, see the 10ms flow against

a 15ms and a 30ms flow separately, finding bandwidth utilisation of the 10ms flow at less

than 25% and 10% respectively. Figure 6 of Shiyao Ma’s paper shows results of such an

experiment with a varying number of flows.

The team discuss how this knowledge of precedence to longer RTT flows could be ex-

ploited. By artificially adding RTT latency a malicious receiving node could occupy band-

width required for other flows. Such an exploit risks violating net neutrality ethics. This

can be seen in figure 7 of the Shiyao Ma Et al. paper referenced. Such a precedence

also highlights that BBR is inverse to efforts made in designing the internet as fast as

possible, if the slowest connection or longest path receives more bandwidth, there is no

need for shortest path routing algorithms.

Hock (2017) observes multiple BBR flows effect on RTT. Hock observers that ”the

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 19

Figure 3.7: IETF 99 Update of BBR convergence (Cardwell, July 2017)

RTT doubles if (at least) two BBR flows with the same RTT min share a bottleneck”. This

is due to BBR’s probeRTT phase. When predicting the minimum RTT BBR requires clear-

ing of the buffer queue, however when other flows are present this can not be controlled,

leading to an overestimation of the RTT and consequently the in flight cap, causing larger

queueing delays per additional flow.

Google inc. (Cardwell, March 2016) published results of two competing BBR flows with

short and long minimum RTT values. Supporting Shiyao Ma’s paper, they also observed

that ”BBR flows w/ higher RTT have an advantage; but BBR flow with 64x higher minRTT

only has ¡ 4x higher bw”. This consolation highlights the precedence to higher RTT val-

ues and again we can observe violation of net neutrality.

The Google team later produce a throughput versus time graph (Cardwell, July 2017)

showing that when multiple flows exist with the same RTT the convergence between mul-

tiple BBR flows leads to an even fairness for all flows (Figure 3.7). This again reinforces

that bias exists where variant RTT values are present.

3.4.2 Inter protocol flows

Inter flow is the presence of competing flows baring different TCP algorithms.

Tongyu Dia Et al. (2018) research also covered inter flow competition between BBR and

CUBIC. The research evaluates the fairness of two flows over a single fibre cable, with

five different queue sizes. The group finds that in order for both flows to evenly share

the bandwidth the queue size must be equal to 300 milliseconds. A value of less than

300 milliseconds (25ms,50ms,100ms) saw BBR take a majority of the bandwidth, whilst

values above (1000ms) saw CUBIC take about 70% of the bandwidth.

Hock (2017) finds similar results to Tongyu, when the buffer is large (large enough to

create queue sizes close to the 1000ms previously mentioned) CUBIC will occupy the

bandwidth bottleneck considerably more than BBR (see Hock’s figure 15). When the

buffer is small BBR takes a majority of the bandwidth whilst CUBIC occupies around

25%.

Bournemouth University, Department of Computing and Informatics, Final Year Project

20 CHAPTER 3. LITERATURE REVIEW

Figure 3.8: Slide 16 - Throughput vs Time (Cardwell, 2017)

Google Inc. after developing BBR published preliminary findings of the algorithm in com-

parison to CUBIC (Cardwell, 2016). The team at Google found that with 8 concurrent

flows, CUBIC experienced increased latency when buffer size increased whereas BBR

was unaffected. They found that when sharing large buffers with a CUBIC flow, BBR ini-

tially could not compete with CUBIC however BBR recovers after about 40 seconds and

proceeds to fairly compete with CUBIC.

When BBR is deployed for WAN TCP traffic at Google the team observed the following:-

2% lower search latency on google.com, 13% larger Mean Time Between Rebuffers on

YouTube, 32% lower RTT on YouTube, Loss rate increased from 1% to 2% (Cardwell,

2017).

The Google team also published a number of comparisons between BBR, CUBIC and

Reno with different flow quantities (figures 3.8, 3.9 and 3.10). Keeping the environment

the same throughout:- 10Mbps bandwidth, 40ms RTT, 1MB buffer (Cardwell, 2017). The

results show that, with the exception of 1 BBR versus 1 Reno (figure3.8 top), both CUBIC

and BBR out perform Reno regardless of the number of Reno flows present. These fig-

ures highlight the struggle for fairness that exists between inter protocol flows, even two

loss based flows (figure3.8 bottom) do not fairly negotiate bandwidth.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 21

Figure 3.9: Slide 17 - Throughput vs Time (Cardwell, 2017)

3.5 Reaction to network changes

Changes to network paths happen for a number of reasons:- A path is no longer ac-

cessible, the bandwidth allowance has changed due to other flows joining or leaving the

network, a new shorter path is discovered, or in the case of mobile networks the UE (User

Equipment) experiences handover and a new path is forged.

Dominik Scholz (2018) researched BBR’s ability to adapt to changing network environ-

ments. Figure 3.11 shows a single BBR flow with an RTT of 40 ms and 10 Mbit/s bot-

tleneck, under changing network conditions. This figure shows that sending rate, RTT

and inflight values align with the bottleneck bandwidth, RTprog and BDP respectively.

ProbeRTT phases can be seen every 10 seconds, starting in the first second. When the

bottleneck bandwidth is doubled BBR is able to adapt the sending rate without building

a significant queue, as noted by the very minimal RTT increase. After the bandwidth is

reduced to its original rate, the in flight data is still delivered at the old bandwidth rate and

a queue forms, increasing the RTT estimation significantly until the queue is drained in

the following five seconds. BBR demonstrates its ability to recover from buffer bloat and

continues to match the expected sending rate, RTT and in flight values.

When the RTprop value in tripled at 56 seconds BBR cannot adapt immediately. As

stated the ProbeRTT phase occurs on the first second every ten seconds - resulting in

ProbeRTT at 51 seconds and again at 61 seconds. Since the tripling of RTT occurs

half way between these times (56 seconds) BBR cannot immediately detect the change.

When RTprop increases, ACK packets require more time to arrive, increasing the inflight

Bournemouth University, Department of Computing and Informatics, Final Year Project

22 CHAPTER 3. LITERATURE REVIEW

Figure 3.10: Slide 18 - Throughput vs Time (Cardwell, 2017)

data until the congestion window is saturated. BBR limits its sending rate until the BtlBw

estimate expires, a new lower BDP is calculated and the congestion window is reduced.

After both the probeBW and probeRTT are complete BBR learns about the new values

and increases the sending rate again to match available bandwidth. When the RTT is

then decreased at 76 seconds, to its original value, BBR responds immediately matching

the inflight data to the BDP.

3.5.1 New flows joining the network

As an internet user can expect multiple connections simultaneously. To truly test fairness

more realistic experiments should include multiple flows, preferably starting at different

times.

Hock experiments with multiple inter protocol flows, two BBR and two CUBIC flows, using

a small buffer. The experiment starts two flows, BBR and CUBIC, at the same time, with

results similar to Hock’s one BBR verses one CUBIC flow. However when the second

BBR flow is established after 98 seconds, the two BBR flows quickly reach respectable

fairness but the CUBIC flow drops to close to zero. The introduction of another CUBIC

flow at 123 seconds does not effect the low CUBIC throughput. Hock repeats the experi-

ment on both 1Gbps and 10Gbps connections and receives the same results.

Cardwell (2016) investigates the convergence of multiple BBR flows joining a network at

different intervals. These results (figure 3.12) show that BBR flows can converge to a

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 23

Figure 3.11: BBR adapting to network changes (Scholz, 2017)

fair share by relinquishing bandwidth to smaller flows. The relinquish and subsequent

convergence of flows is a results of BBR gain cycling. Gain cycling occurs during the

probeBW phase and is designed to vary the pacing gain, reducing it to allow smaller

flows to compete and enlarging it to occupy the available bandwidth.

Scholz (2017) also conducts experiments into the effect of additional flows, with the

same RTT time, joining the network at different time periods. Scholz deduces that while

BBR flows can synchronise, the time it takes to achieve equal fairness is heavily reliant

on the timing of flows already present (figure 3.13.A). This figure displays results when

four synchronised BBR flows are joined by an additional BBR flow. This show the optimal

timing for a joining flow is during the probeRTT phase. As existing flows have drained

the queue the new flow can correctly measure the RTT alongside the existing flows and

thus synchronise. Similar to behaviours seen in the inter flow fairness section 3.4.2,

one flow can dominate others when its BDP is too high due to incorrect/outdated RTT

value. Figure 3.13.B shows that the optimal flow arrival timing must factor the startup

phase of the new flow. By joining at 1.7 seconds before the next probeRTT the new

flow undertakes startup whilst the existing flows drain ready for probeRTT. As a results

the new flow overestimates the bottleneck and suppresses the existing flows. Given an

extra 0.3 seconds (2 seconds before probeRTT) the new flow can complete startup and

drain a majority of its queue for the existing flows to measure a more representable RTT,

syncing the flows but slightly overestimating the bottleneck. In contrast joining at 1.7

seconds before probeRTT sees fairness stabilising above 95% only after 22 seconds,

whereas 2 seconds before improves this values to only 10 seconds. Scholz remarks

that ”Considering the prevalence of short-lived flows in the Internet, this high value (22

Bournemouth University, Department of Computing and Informatics, Final Year Project

24 CHAPTER 3. LITERATURE REVIEW

Figure 3.12: BBR adapting to new flows (Cardwell, 2016)

Figure 3.13: BBR adapting to new flows in relation to Probe RTT of existing flows (Scholz,

2017)

seconds) poses a significant disadvantage of TCP BBR”.

Figures 3.14.A and 3.14.B supports the findings Scholz demonstrates above. With a flow

(A) joining during the probeRTT phase we see convergence occurring significantly faster,

reaching 100% fairness after 55 seconds, then a flow joining immediately after probeRTT

(B).

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 3. LITERATURE REVIEW 25

Figure 3.14: BBR adapting to new flows during and after Probe RTT of existing flows

(Scholz, 2017)

Bournemouth University, Department of Computing and Informatics, Final Year Project

Chapter 4

Methodology

4.1 Development Methodology

4.1.1 Available Methodologies

Many design methodologies exist that dictate the interaction between developers, users,

contractors and the software its self. As this is a research project, not all of the above

entities exist and thus a methodology would need to focus on the aims set forward by the

project rather than communication between entities.

Methodologies such as agile and Dynamic Systems Development Methodology (DSDM)

allow for the completion of tasks based on a priority (such as MoSCoW). Whilst such a

priority system could be implemented, it would not suit the investigative nature of the re-

search as it is not yet clear the potential of BBR algorithm. As this is an individual project,

methodologies that require greater than one person are not an option (such as eXtreme

Programming or Joint Application Development).

Linear methodologies, such as waterfall, are not suited to this research project. Whilst

many objectives are similar and could be conducted in parallel, benefits to tackling one

objective at a time are clearly present:- Improvements to the use of the software as knowl-

edge increases, continuous time management on completion of every objective and the

acknowledgement of meeting requirements before the project is close to an end.

Rapid Application Development (RAD) is an agile software development methodology.

RAD undertakes an iterative approach to building a software solution. By specifying

the deconstructed objectives upfront with clear time frames, (Prashanth Kumarl and

Prashanth, 2014) developers are encouraged to start development promptly. Such a

solution is ideal for this project, having already defined the deconstructed objectives in

the form of aims (see section 1.2.1). However such a methodology risks poorly defined

objectives impacting the whole project. This risk is mitigated due to the isolation of objec-

tives into logical groupings and continuous discussions with the project supervisor.

26

CHAPTER 4. METHODOLOGY 27

4.1.2 Chosen Methodology

RAD has been chosen for this project due to the solo element of the programming and

the time frame to create artefact. It is crucial that the project is completed as the time

frame can not be manipulated. Using the aims, focus and effort can be applied based on

the remaining work, complexity and remaining time. As stated the objectives are similar,

that is they all run experiments against the simulator before evaluating BBR, and would

be conducted iteratively.

4.2 Development Software

BBR research can be conducted using a variety of methods. Other research into BBR

includes using Mininet (Scholz, 2018) or running experiments with physical hardware

(Tongyu Dai, 2018). This research evaluates BBR using NS-3 Network Simulator V3

(NS-3, 2018).

NS-3 is well known simulator in academics, it is open source and written in c++ and

python. Whilst simulators are not fully representable of real life, Claypool et al. believe

that ”generally, the performance results for BBR and BBR’ look quite similar, with nearly

the same round-trip times, bandwidths and bytes inflight”. Figures 4,5 and 6 of his paper

support this statement through comparisons of BBR and BBR’.

Using version 3.27 of NS-3 ensures compatibility with BBR’ module written and released

by Claypool (Claypool, 2018). This version is also compatible with a CUBIC module (Lev-

asseur, 2014) allowing for algorithm comparison. Choosing an older version of NS-3

provides protection against release bugs, ensures documentation exists and allows com-

pilation on a stable operating system. This research uses Ubunutu 16.04 LTS, again an

older version, which is open source and considered highly stable.

Both modules were then evaluated to ensure they were patched into NS-3 correctly. This

was done in the case of BBR through validation with Claypool’s BBR for NS-3 results

(claypool, 2018). For CUBIC, a python script is supplied to validate the patch.

Bournemouth University, Department of Computing and Informatics, Final Year Project

Chapter 5

Analysis and Design

5.1 Topologies

The network topology designs can be seen in figures 5.1 to 5.7. Each design details the

network topology (nodes n0 to nX), bottleneck link and direction of flow(s).

5.1.1 Line Topology

Figure 5.1 is set up to test BBR’s performance and compare against other algorithms.

This topology sees computers connected over a single hop, simulating a communication

of two machines over LAN connection with n1 acting as a router. This topology allows for

initial comparison of BBR to other algorithms and validation against Claypool (2018).

n0
(source) Bn1 n2

(destination)

B = Bottleneck= Direction of flow

Figure 5.1: Line topology (3 nodes)

5.1.2 Modified Line Topology

Figure 5.2 topology allows competing flows to occupy the bottleneck by the addition of

node n3. Conducting a secondary flow on an alternative node will test BBR’s ability to

28

CHAPTER 5. ANALYSIS AND DESIGN 29

sync with other BBR flows. Due to an ns3 limitation, additional nodes are also required

to modify attributes such as bandwidth and delay on each flow individually. As research

has already indicated, BBR does not share the bandwidth bottleneck fairly. This topology

will continue this research to evaluate BBR’s fairness.

n0
(source) Bn1 n2

(destination)

n3
(source)

B = Bottleneck= Direction of flows

Figure 5.2: 2 competing flows - modified line topology

5.1.3 2 by 2 Horizontal Dumbbell

Figure 5.3 features a 2 by 2 dumbbell topology. The dumbbell topology is commonly used

(Scholz, 2018) (Hock, 2017) as closely resembles real world network toplogies, provides

one communal bottleneck and is highly scalable. This setup allows for one or more flows

to exist on a path:- multiple flows can compete within the same path, between different

paths or both.

5.1.4 2 by 2 Vertical Dumbbell

Figure 5.4 features a modified dumbbell topology with flows travelling top down. Similar

to 5.3 this topology, investigates BBR’s behaviour to bidirectional flows over the bottle-

neck. Whilst not often tested, the effect of ACK clock and possible ACK suppression may

present alternative findings.

Bournemouth University, Department of Computing and Informatics, Final Year Project

30 CHAPTER 5. ANALYSIS AND DESIGN

n0
(source) Bn2 n3

n1
(source)

n4
(destination)

n5
(destination)

B = Bottleneck= Direction of flows

Figure 5.3: 2x2 horizontal dumbbell topology

n0
(source)

Bn2 n3

n1
(destination)

n4
(source)

n5
(destination)

B = Bottleneck= Direction of flows

Figure 5.4: 2x2 vertical dumbbell topology

5.1.5 3 by 3 Horizontal Dumbbell

Figure 5.5 similar to 5.3 features a dumbbell topology. This topology allows for 3 alter-

native algorithms to compete over paths with one-to-one or one-to-many relationship, all

likely scenarios given that different operating systems run different algorithms and flows

of varying implementations can originate from any one of the nodes. In this topology

multiple algorithms can be seen competing and multiple algorithm implementation types

(loss based, delay based and congestion based) observed, unveiling possible bias to-

wards homogeneous implementation types.

5.1.6 Line Topology - One New Flow

As stated in 3.5.1 BBR does not behave as desired when subsequent flows arrive. This

topology allows the investigation of delayed flows effect on BBR by introducing a flow on

n2, after a given time, before the bottleneck. Using this 4 node line allows comparison

both before (n1) and after (n3) introduction of the new flow(s).

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 5. ANALYSIS AND DESIGN 31

n0
(source)

Bn3 n4 n1
(source)

n5
(destination)

n6
(destination)

n2
(source)

n7
(destination)

B = Bottleneck= Direction of flows

Figure 5.5: 3x3 horizontal dumbbell topology

n0
(source) n1 Bn2

(source)
n3

(destination)

B = Bottleneck= Direction of flows

Figure 5.6: Introducing a new flow

5.1.7 Line Topology - Two New Flows

Continuing the research from 5.1.6 this topology evaluates BBR’s performance when

many flows arrive. By using two separate nodes to deliver additional flows this topology

resembles scenarios common in real world networks.

5.2 Coding

Project related code can be found in the appendix and artefact. Code is written in C++

(NS-3), python (parsing) and plain text (GNUPLOT scripting). When writing the code the

topology designs above were followed.

For every simulation a folder is created containing the simulation code, results per flow,

results in graph form, the python script to parse this per flow data and the GNUPLOT

Bournemouth University, Department of Computing and Informatics, Final Year Project

32 CHAPTER 5. ANALYSIS AND DESIGN

n0
(source)

n1
(source) Bn2

(source)
n3

(destination)

B = Bottleneck= Direction of flows

Figure 5.7: Introducing multiple new flows

script to generate said graph. This structure allows future users full access to code en-

abling modification and execution of individual simulations and the generation of results

at whim, ensuring replicability. This logical grouping also allows for additional simulations

to be created without increased complexity - simply create another topology, add an ac-

companying folder and start coding.

5.2.1 Simulation Coding

For each script an ascii interpretation of the design was created in the header comment,

showing the network topology, bottleneck path, IP addresses and subnets. Constants

for the simulation are declared foremost, such as available bandwidth, path delay, router

queue size, packet size, output booleans and TCP socket implementation. TCP imple-

mentations can be changed by adjusting the commented lines found at the bottom of the

constants list. Unfortunately the software is not able to run multiple TCP versions on one

script. This is a limitation of the software.

Every script contains a main function that builds the simulation environment and runs the

simulation as per NS-3 guidelines (NS-3, 2019). For each script the following ordered

processes must occur:- creation of nodes, setup connections between nodes, configura-

tion of connections, allocation of IP addresses, installation of applications, optional output

file specification and finally simulation start/stop/destroy commands. Every script is com-

mented to distinguish each process.

5.2.2 Results Coding

Python was used to interpret the output from the simulation - a custom tracefile format (.tr)

that can be treated as a CSV file when delimited by empty spaces rather than commas.

Custom written Python scripts filtered NS-3 produced outputs to be used for GNUPLOT

scripts. The python scripts make the following assumptions:- Only packets marked with

’r’ (denoting a received packet (NS-3, 2019)) are parsed, packets not equal to ”PACKET -

SIZE” constant set in the NS-3 script are ignored, duplicate packets are ignored and

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 5. ANALYSIS AND DESIGN 33

packets sent outside of the specified simulation duration time are ignored, the user knows

the IP and port numbers needed to parse. An instance of this script can be found in the

appendix.

Using GNUPLOT scripts, parameters of the graph are scripted including:- title, axis labels,

axis ranges, output file and data to be plotted. GNUPLOT scripts consume data per flow,

before combining into one graph. GNUPLOT scripts are written using GNUPLOT syntax

and executed over command line to produce scalable vector graphics (.svg) graph files.

Bournemouth University, Department of Computing and Informatics, Final Year Project

Chapter 6

Results

All processed simulation results in the form of graphs supplied in this chapter and in the

artefact. All unprocessed results, in the form of traceroute files, can be found in the arte-

fact submission.

The comparisons below are between BBR and two loss based algorithms:- CUBIC and

NewReno. NewReno, an improvement over Reno, is highly stable TCP implmentation.

CUBIC is amongst the most popular, ”46.92%” of web servers run CUBIC (Mudassar Ah-

mad, 2018) and therefore a logical comparable TCP candidate.

In this chapter, references to throughput signifies enqueued networks packets multiplied

by the packet size over time represented in Megabits per second. Fairness refers to the

acquisitions of equal throughput over the duration of the simulation, given the number of

flows and bottleneck bandwidth.

6.1 Replication of Results

6.1.1 BBR - Claypool

This topology is focused on replication of results from other works to verify the simulator.

Figure 6.1 shows replication of Claypool (Claypool, 2018). The simulation acquires the

same throughput as Claypool records. From the figure can also be inferred the nature

of BBR, seen at the start BBR experiences exponential growth until the first congestion

event and subsequent drain at around 0.5 seconds. Achieving 18/20Mbps BBR success-

fully saturated the bottleneck at Kleinrock’s optimal point.

34

CHAPTER 6. RESULTS 35

Figure 6.1: Claypool Replication Results

6.1.2 BBR - Shiyao

Figure 6.2 shows replication of Shiyao (Shiyao, 2017). Whilst Shiyao runs this simulation

at a factor of 10 larger, the results demonstrate the same findings.

Bournemouth University, Department of Computing and Informatics, Final Year Project

36 CHAPTER 6. RESULTS

Figure 6.2: Shiya Replication Results

6.1.3 Cubic and NewReno

In contrast the replication simulations are compared to the same simulations using CU-

BIC (figure 6.3) and NewReno (figure 6.4) TCP algorithms. For Claypool’s replication,

both CUBIC and NewReno show higher throughput by around 0.2Mbps or 1%.

When compared to Shiyao’s results for BBR, BBR shows fairness equilibrium at 4.6 sec-

onds whereas neither CUBIC (figure 6.5) or NewReno (figure 6.6) achieve fairness.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 37

Figure 6.3: Claypool Replication Results CUBIC

Bournemouth University, Department of Computing and Informatics, Final Year Project

38 CHAPTER 6. RESULTS

Figure 6.4: Claypool Replication Results NewReno

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 39

Figure 6.5: Shiya Replication Results CUBIC

Bournemouth University, Department of Computing and Informatics, Final Year Project

40 CHAPTER 6. RESULTS

Figure 6.6: Shiya Replication Results NewReno

6.2 Bandwidth

Figures 6.12 and 6.13 show that BBR is able to saturate a bottleneck with multiple flows

at or just below Klienrock’s optimal point within 1.5 seconds of joining the network. Hav-

ing probed at 1.2 seconds and with 3.8 further seconds to undertake both probe states

again, it is clear from both figures that the BBR flows would plateau for the duration of the

simulation.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 41

Figure 6.7: Results for One vs One Horizontal Dumbbell over BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

42 CHAPTER 6. RESULTS

Figure 6.8: Results for One vs Two Horizontal Dumbbell over BBR

The third topology used highlights BBRs ability over a dumbbell topology. Figure 6.9

shows BBR undertaking probing RTT in frequent intervals, noted by the small bandwidth

drops lasting around 200ms. Probe RTT happens after probing bandwidth, hence the

shallow peak trough pattern. Figure 6.10 shows the same throughput recorded for CU-

BIC in comparison. CUBIC achieves the same throughput but unlike BBR, also achieves

full fairness with a Jain’s fairness index value of 1.

In comparison over the 5 seconds of simulation on vertical dumbbell at 10Mbps bottle-

neck, two flows of BBR transport 84.833Mb (out of the possible 100Mb) whereas two

flows of CUBIC traffic achieve 88Mbps total throughput. The remaining 15.2Mb is possi-

bly outstanding as buffered packets in the receivers client or packets still in-flight, pack-

ets that were not marked by the simulation as delivered and thus not recorded. This is

due in part by how BBR calculated bottleneck bandwidth, using the in-flight transmission

medium and buffer as part of the path to maintain full path saturation and thus constant

delivery rate.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 43

Figure 6.9: Results for One vs One Vertical Dumbbell over BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

44 CHAPTER 6. RESULTS

Figure 6.10: Results for One vs One Vertical Dumbbell over CUBIC

Figure 6.11 shows BBR In another dumbbell topology. In these simulations again

BBR flows synchronise, probing for bandwidth per flow at around 0.2 seconds before the

RTT probing phase at around 0.4 seconds and subsequent regrowth to the previously

calculated bottleneck. This graph demonstrates what a stable connection would ideally

experience using BBR.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 45

Figure 6.11: Results for 3 flow 3x3 Dumbbell over BBR

The flows in figure 6.11 have a combined throughput of 46.77Mb (out of 50Mb). How-

ever BBR is exceeded by both CUBIC (figure 6.15) and NewReno (figure 6.16) with total

throughputs of 49.74Mb and 49.66Mb respectively. This is due to BBRs flow synchronis-

ing at a lower throughput to CUBIC and NewReno.

6.3 Fairness

Figures 6.12 and 6.13 show that BBR is able to adapt the number of flows to the bottle-

neck. As seen in both figures at around 1.5 seconds in, BBR synchronisation occurs and

the flows start to share the bottleneck. However figure 6.13 shows a minimal bias, when

the number of flows from one source out weights another, the source with the least num-

ber of flows is suppressed. This is likely caused in two parts, firstly synchronisation of the

two flows as they originate from the same source. Secondly, due to the synchronisation

of said flows, incorrect estimation by the single flow of the RTT due to congestion caused

by the dominate flows.

Bournemouth University, Department of Computing and Informatics, Final Year Project

46 CHAPTER 6. RESULTS

Figure 6.12: Results for One vs One Horizontal Dumbbell over BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 47

Figure 6.13: Results for One vs Two Horizontal Dumbbell over BBR

The third topology evaluates BBRs ability to maintain the optimal operating point over

a bidirectional bottleneck. BBRs algorithm relies on timed monitoring of congestion to

dictate a bottleneck and in doing so records the pace of packet delivery (dictated by ACK

clock). When flows travel along the same path they use the same pacing and BBR syn-

chronises these flows, causing the single flow to dominate the bandwidth (as seen in

figure 6.14).

Bournemouth University, Department of Computing and Informatics, Final Year Project

48 CHAPTER 6. RESULTS

Figure 6.14: Results for One vs Two Vertical Dumbbell over BBR

When two apposing flows are present BBR (figure 6.9) closes the fairness gap further

after every probe cycle is complete, indicating that BBR can handle bidirectional bottle-

necks. CUBIC (figure 6.10) outperforms BBR in this topology, again CUBIC is able to

achieve full fairness.

In contrast to figure 6.11 both CUBIC and NewReno show unfairness for the first 3

seconds of the simulations (figures 6.15 and 6.16), both showing almost 20% difference of

the overall throughput at 0.4 seconds, easing into an equal fairness that can be observed

from the 3 second mark onward.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 49

Figure 6.15: Results for 3 flow 3x3 Dumbbell over CUBIC

Bournemouth University, Department of Computing and Informatics, Final Year Project

50 CHAPTER 6. RESULTS

Figure 6.16: Results for 3 flow 3x3 Dumbbell over NewReno

Figures 6.17, 6.18 and 6.19 show the result of an additional flow joining the network

from another source. Figures 6.17 and 6.18 demonstrate that both CUBIC and BBR

favour the shortest path (joining flow - as it joins at node 2 closest to the destination

node 3), calculating close to the bottleneck bandwidth before the original flow reaches

the destination. However the original flow (longest path to destination - from node 0 to

node 3) is able to gain considerable throughput and reach fairness half way through the

5 second simulation. It is clear that the two flows do synchronise, but without the ability

to track BBRs internal variables it is unclear why the original flow is considerable more

aggressive at acquiring throughput and why after 2.5 seconds the flows do not maintain

equal fairness. This is an anomaly that could be investigates with additional time and

bespoke networking software.

Whilst CUBIC behaviour mirrors that of BBR, NewReno appears to favour the joining

flow in a manner expected by BBR. NewReno experiences the same joining flow spike,

reaching close to 8Mbps before idling at a stable 6-7Mbps. The original flow, having a

longer path, obtains a throughput inverse of the joining flow, idling at 3-4Mbps at 2.5

seconds after growing at around 1Mbps every second.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 51

Figure 6.17: Results for joining flow on node 2 over BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

52 CHAPTER 6. RESULTS

Figure 6.18: Results for joining flow on node 2 over CUBIC

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 53

Figure 6.19: Results for joining flow on node 2 over NewReno

6.3.1 Delayed Joining Flows

For comparison with figure 6.17, figures 6.20 to 6.24 show the joining flow arriving at

increments of 200ms later than the original flow. This topology negates the effects of

shorter paths as well as resembling more likely scenarios - that flows enter and exit net-

works at random intervals. Another reason for choosing 200ms intervals, BBR’s probeRT-

TInterval internal variable, which dictates the duration of an RTT probe, is 200ms which

ensures that the first probe RTT is complete before a flow joins the network.

Figure 6.20 shows the BBR 200ms delayed flow is able to use the exponential startup

to quickly reach similar throughput to the original flow. Unfortunately poor timing of the

joining flows sees it probe RTT just as the original flow probes for bandwidth at 1 second.

At 1.4 seconds the opposite happens, the original flow probes for RTT just before the

joining flow undertakes probe bandwidth. These two opposing events sees the delayed

joining flow overestimate the RTT and underestimate the available bandwidth, leading to

heavy suppression by the original flow. This is a critical flaw of BBR that was observed

also by Scholz (2017), that in order to be resolved, would require BBRs awareness of

other flows internal state variables.

Bournemouth University, Department of Computing and Informatics, Final Year Project

54 CHAPTER 6. RESULTS

Figures 6.21 to 6.24 all show a common trend. By joining late the delayed flow is able to

occupy a fair share of the bandwidth. The original flow undertakes both probing states

before the delayed flow is able to compete. This leads to the original flow predicting

higher throughput then is fair but predicting an accurate RTT. Consuming a considerable

amount of bandwidth the original flow causes the delayed flow to inaccurately predict an

RTT time - the path and buffer are not cleared by the dominate flow. As a result the flows

will never achieve equal fairness.

This is a considerable issue for BBR, the unfairness presented here can have a large

impact in industry. By suppressing connections with low RTT those unable to pay for the

fastest connections will be hindered. This principle is known as net neutrality and refers

to the right of all users to have equal access to network resources irrelevant of their in-

frastructure or geographical location.

Whilst Cardwell (2016) is able to demonstrate that multiple delayed joining BBR flows

can reach equal fairness after 20 seconds, he negates the specific entry times of such

flows and ignores the industrial nature of networks - 20 seconds of network unfairness is

enough to dissuade customers not to return.

To improve BBR more research must be done introducing flows with delays of a range

of 500 to 3000ms at intervals of 50ms. This would seek to address the opposing probe

state situation seen in the first 1.5 seconds of figure 6.20.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 55

Figure 6.20: Results for 200ms delayed joining flow joining on node 2 running BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

56 CHAPTER 6. RESULTS

Figure 6.21: Results for 400ms delayed joining flow joining on node 2 running BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 57

Figure 6.22: Results for 600ms delayed joining flow joining on node 2 running BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

58 CHAPTER 6. RESULTS

Figure 6.23: Results for 800ms delayed joining flow joining on node 2 running BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 59

Figure 6.24: Results for 1000ms delayed joining flow joining on node 2 running BBR

6.3.2 Multiple Joining Flows

The flows in these simulations join the network at the same time (all flows start at 0.0

seconds) from individual nodes. This experiment replicates what might occur after the

resolution of a network outage, many connections starting from multiple sources simulta-

neously. Figures 6.25, 6.26 and 6.27 display the results. Figure 6.25 shows the BBR is

not capable of handling such events. Not only does no fairness resolution occur, flows do

not synchronise probing events and the end result is considerably different throughput for

all 3 flows.

Given the results it is clear that two BBR flows will overlap in a given time dependant on

the available throughput. In figure 6.17 the overlap occurs at 2.5 seconds, whereas in

figure 6.25 the overlap occurs at 3.5 seconds, an additional seconds due to less avail-

able throughput because of the additional joining flow. Given more time this would be a

relationship worth pursuing.

CUBIC and NewReno however operate in the same regard. Not only do they demon-

strate bias towards the shorter path (as BBR did to start), they never reach equal fairness

during the simulation and finish with similar separation to BBR.

Bournemouth University, Department of Computing and Informatics, Final Year Project

60 CHAPTER 6. RESULTS

Figure 6.25: Results for joining flows on nodes 1 and 2 running BBR

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 61

Figure 6.26: Results for joining flows on nodes 1 and 2 running CUBIC

Bournemouth University, Department of Computing and Informatics, Final Year Project

62 CHAPTER 6. RESULTS

Figure 6.27: Results for joining flows on nodes 1 and 2 running NewReno

6.4 Summary

6.4.1 Results

BBR as a candidate for TCP congestion control is theoretically promising but this re-

search shows that BBR struggles to improve over loss based congestion control algo-

rithms. BBR can achieve Kleinrock’s optimal saturation point over a given path, but only

in non challenging conditions where other flows have the same RTT and path. Currently

BBR matches CUBIC and NewReno in its ability to manage multiple directional flows,

share the bandwidth and redistributing the throughput. However no algorithm provides

complete advantageous characteristics over another and fairness, to the extent desired

for net neutrality, is still absent. Further investigations that analyse the internal state vari-

ables of BBR at run time are required to suggest suitable changes to the implementation.

Bournemouth University, Department of Computing and Informatics, Final Year Project

CHAPTER 6. RESULTS 63

6.4.2 Artefact

The artefact is a simulation environment that analyses the BBR algorithm for use in mod-

ern networks. Using the artefact researchers can evaluate BBR against a vast number

of other TCP algorithms or simply interpret the current findings again through re-use of

the traceroute and parsing scripts supplied with every simulation run. The use of global

constants allows full configuration of the simulations, accompanied by comments to give

clarity to all code. In using professional coding standards the simulation scripts are easy

to interpret, used alongside the parsing and plotting scripts, these enable users to create

or manipulate existing simulations and quickly generate results to be graphed.

Bournemouth University, Department of Computing and Informatics, Final Year Project

Chapter 7

Conclusion

7.1 Evaluation

The implementation of the artefact achieves its main goal, to evaluate the BBR algorithm

and supply a testbed for future research to users of any technical level. Repeatability and

reproducibility are important and the artefact’s implementation supports this in its struc-

ture, keeping separate the simulation scripts from the parsing and plotting scripts, the .cc

files can be reused in other related works. NS-3 was the most suitable simulator for this,

allowing logical separation between the simulator and the simulation (scripts).

The simulator (NS-3) did however produce a number of issues. Not only was the de-

bugging and testing complex and time consuming, but a limitation of the software (its

inability to run multiple TCP types at runtime) dramatically reduced the number of sim-

ulations available and thus hindered the analysis of BBR, limiting experiments to only

intra-protocol simulations and comparisons. This impacted the project, other research

evaluates BBR’s behaviour with other TCP algorithms because this is highly important

when BBR is released and considerably more representable of modern networks - which

may see many flows with varying TCP algorithms.

The RAD methodology has worked well in this project due to the time frame that was

given. RAD helped to develop simulations that were thorough but not excessive, keep-

ing me within the time frames set out at the start of the project. Time management was

monitored using spreadsheet software, the original plan (appendix 1) set out weekly con-

straints for objectives which, by using an live updated copy, allowed tracking of overall

project progress (appendix 2). The only issue with the chosen methodology was the user

feedback, having no end user feedback, my feedback was restricted to the project super-

visor and compiler affirmations.

In section 1.2.1 the aims and objectives of this project were set out. Objectives 1 has

been completed, and the success criteria can seen in section 2 and section 3. Objective

2 can be seen in section 4.2. Objectives 3,4 and 5 success criteria can be seen in section

64

CHAPTER 7. CONCLUSION 65

6, however objective 4 is only partially complete (intra-protocol is done inter-protocol is

not) due to the software limitation mentioned above. Objective 6 is not complete, again

due to limitations in the software as well as a lack of time and understanding. Objec-

tive 6 sets out to investigate BBR during network changes, something that requires the

understanding ability to control the internal state variables of BBR through modifications

(known as patches) of NS-3 simulator itself. The issues with objectives 4 and 6 were risks

highlighted as possibilities on the risk analysis - see appendix 1 ”Simulations are outside

of the capability of the software” however the solution provide was vague, ambiguous and

too time consuming - ”Investigate the software to be used and suggest other software or

alternative implementations of the simulation” and did little to aid the project.

7.2 Future Work

This project was built with continuation in mind and simulations could easily be extended

to scale for more nodes, more flows or both. Other works could look at modifying the

global variables of the simulations scripts, which were declared as constants to allow easy

and quick change to attributes such as:- bottleneck size, bottleneck locations, bandwidth

of paths entering/exiting the bottleneck and path delays. These constants were used

for example for adjusting the delay in the delayed starting flow simulations. Possible

future work could include parsing of the trace files, already present in the artefact, to

analyse network attributes such as latency and goodput for greater indepth evaluation of

Bandwidth Bottleneck Round trip time.

WORD COUNT: 10,590

Bournemouth University, Department of Computing and Informatics, Final Year Project

Bibliography

Ahmad, M., Hussain, M., Abbas, B. and Aldabbas, O., 2018. “end-to-end

loss based tcp congestion control mechanism as a secured communica-

tion technology for smart healthcare enterprises” [online]. Available From:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=8294190 [Accessed 16

November 2018].

Allman, M., Glenn, N., Paxson, V., ACIRI-ICSI and Stevens, W., 1999. Tcp congestion

control. Available from: https://tools.ietf.org/html/rfc2581 [Accessed 7 February 2019].

Allman, M., Paxson, V., ICSI, Blanton, E. and University, P., 2009. Tcp congestion control.

Available from: https://tools.ietf.org/html/rfc5681 [Accessed 7 February 2019].

Baker, F., Systems, C., Fairhurst, G. and of Aberdeen, U., IETF Rec-

ommendations Regarding Active Queue Management. 2015. Available from:

https://tools.ietf.org/html/rfc7567 [Accessed 11 February 2019].

Bonaventure, O., 2016. ”april 2016: Editor’s message” [online]. ACM Digital Library. Avail-

able From: http://www.sigcomm.org/node/3897 [Accessed: 05 February 2019].

Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Ja-

cobson, V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, S.,

Wroclawski, J. and Zhang, L., 1998. Recommendations on queue management and

congestion avoidance in the internet. Available from: https://tools.ietf.org/html/rfc2309

[Accessed 9 February 2019].

Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H. and Jacobson, V., 2016a. Bbr:

Congestion-based congestion control. ACMqueue, 14 (5).

Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H. and Jacobson, V., 2016b. Bbr

congestion control. Available from: https://www.ietf.org/proceedings/97/slides/slides-

97-iccrg-bbr-congestion-control-02.pdf [Accessed 1 March 2019].

Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H. and Jacob-

son, V., July 2017. Bbr congestion control: An update. Available from:

66

BIBLIOGRAPHY 67

https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-

congestion-control-00.pdf [Accessed 3 March 2019].

Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., Swett, I., Iyengar, J., Vasiliev,

V. and Jacobson, V., March 2017. Bbr congestion control: Ietf 99 update. Available

from: https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-

00.pdf [Accessed 4 March 2019].

Cardwell, N., Cheng, Y., Yeganeh, S. H., Jacobson, V. and inc, G., 2017. ”bbr

congestion control”. Internet Congestion Control Research Group. Available from:

https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00 [Accessed 10

February 2019].

Cerf, V. and Kahn, R., 1974. ”a protocol for packet network intercommunication”. IEEE

Transactions on Communications, 22 (5), 637–648.

Claypool, M., Chung, J. W. and Li, F., 2018. Bbr’ – an implementation of

bottleneck bandwidth and round-trip time congestion control for ns-3. WNS3

’18 Proceedings of the 10th Workshop on ns-3, 1, 1–8. Available from:

https://dl.acm.org/citation.cfm?id=3199903 [Accessed 25 February 2019].

Crichigno, J., Csibi, Z., Bou-Harb, E. and Ghani, N., 2018. ”impact of seg-

ment size and parallel streams on tcp bbr”. 2018 41st International Con-

ference on Telecommunications and Signal Processing (TSP). Available from:

https://ieeexplore.ieee.org/document/8441250/ [Accessed 20 February 2019].

Dai, T., Zhang, X. and Guo, Z., 2018. Poster abstract: Analysis and experimental investi-

gation of bbr. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), 1–2.

Fleshgrinder, 2014. ”file:tcp slow-start and congestion avoidance.svg”. Available from:

https://commons.wikimedia.org/wiki/File:TCP Slow-Start and Congestion Avoid-

ance.svg [Accessed 15 February 2019].

Ha, S., Rhee, I. and Xu, L., 2005. ”cubic: A new tcp-

friendly high-speed tcp variant” [online]. Available From:

https://www.cs.princeton.edu/courses/archive/fall16/cos561/papers/Cubic08.pdf

[Accessed 14 February 2019].

Hock, M., Bless, R. and Zitterbart, M., 2017. “experimental evaluation of bbr congestion

control”. Available from: https://ieeexplore.ieee.org/document/8117540/ [Accessed 10

November 2018].

Jacobson, V., 1988. ”congestion avoidance and control” [online]. Available From:

https://ee.lbl.gov/papers/congavoid.pdf [Accessed: 10 February 2019].

Bournemouth University, Department of Computing and Informatics, Final Year Project

68 BIBLIOGRAPHY

Kleinrock, L., 1979. ”power and deterministic rules of thumb for proba-

bilistic problems in computer communications.” [online]. Available From:

https://www.lk.cs.ucla.edu/data/files/Kleinrock/Power and Deterministic Rules of

Thumb for Probabilistic.pdf [Accessed 05 February 2019].

Kumarl, B. P. and Prashanth, Y., 2014. Improving the rapid

application development process model. Available from:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7056962 [Accessed 9

March 2019].

Levasseur, B., 2014. Available from: http://perform.wpi.edu/downloads/cubic/ns-

3.27.tar.gz [Accessed 7 March 2019].

Low, S., Peterson, L. and Wang, L., 2000. ”understanding tcp vegas: Theory and practice”

[online]. Available From: ftp://ftp.cs.princeton.edu/reports/2000/616.pdf [Accessed 10

February 2019].

Ma, S., Jiang, J., Wang, W. and Li, B., 2017. Fairness of congestion-

based congestion control: Experimental evaluation and analysis. Available from:

https://arxiv.org/pdf/1706.09115.pdf [Accessed 28 February 2019].

NS-3, 2018. Older releases. Available from: https://www.nsnam.org/releases/ns-allinone-

3.27.tar.bz2 [Accessed 5 March 2019].

NS-3, 2019a. ”conceptual overview” [online]. Available From:

https://www.nsnam.org/develop/contributing-code/coding-style/ [Accessed: 12 Febru-

ary 2019].

NS-3, 2019b. ”parsing ascii traces” [online]. Available From:

https://www.nsnam.org/docs/release/3.9/tutorial/tutorial23.htmlParsing − Ascii −
Traces[Accessed : 16March2019].

Ramakrishnan, K., Networks, T., Floyd, S., ACIRI, Black, D. and EMC, 2001.

The addition of explicit congestion notification (ecn) to ip. Available from:

https://tools.ietf.org/html/rfc3168 [Accessed 14 February 2019].

Scholz, D., Jaeger, B., Schwaighofer, L., Raumer, D., Geyer, F., and Carle, G.,

2018. Towards a deeper understanding of tcp bbr congestion control. Available

from: https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/IFIP-Networking-

2018-TCP-BBR.pdf [Accessed 3 March 2019].

Tanenbaum, A. and Wetherall, D., 2011. Computer Networks. 5th edition. New Jersey USA:

Prentice Hall.

Bournemouth University, Department of Computing and Informatics, Final Year Project

Appendices

69

70

Risks Solutions

Simulations are outside of the

capability of the software.

Investigate the software to be used and suggest other

software or alternative implementations of the simulation.

Changes to design or

understanding of the BBR

protocol.

Allow time throughout the project to research the most

recent implementation of the BBR protocol as it is highly

likely to undergo changes whilst the project is conducted.

All aims can not be achieved

in the required time frame.

Set a priority list to establish precedent to allow revoking of

less important aims within a given objective.

Unforeseen Circumstances

(eg natural disasters, power

outages, corruption of data

etc.).

Loss or corruption of data, either via accidental damage

or a naturally occur event, can be mitigated by keeping a

backup of all digital data (from data collect by simulations

to the code that runs the simulations themselves). This

includes the report documentation.

Affected by illness. Set small margin of error in time planning to account for this

possibility.

Artefact is infeasible Complete the artefact with only the feasible features.

Table 1: Risk Analysis

Below contains the code for parsing the traceroute files for use in graph plots. PORT-

NUMBER and IPADDR represents the target node of which the user desires throughput

statistics.

import csv

seconds counters

previousCounter = 0.0

counter = 5

list of sequence numbers

used to remove duplicate rows

seqList = []

packet counter to calculate throughput

numberOfBytes = 0.0

with open(’./replication/Replication.of.shiyao.Arxiv.figure1.tr’, newline=’’) as csvfile:

rowreader = csv.reader(csvfile, delimiter=’ ’, quotechar=’"’)

for row in rowreader:

Bournemouth University, Department of Computing and Informatics, Final Year Project

71

get only recieved packets

from a given host

to differentiate flows we just isolate with port number where required

if row[0].startswith(’r’) and row[28] == IPADDR and row[34] == PORTNUMBER:

prevent duplicate packets

if row[18] not in seqList:

seqList.append(row[18])

check qualifying packets - should show payload on last element

if len(row) == 43:

checking payload here (last element on 0-starting index)

if row[42] == "(size=1000)":

group in 40ms batches if required for GNUPLOT

if float(row[1]) <= counter and float(row[1]) >= previousCounter:

numberOfBytes = numberOfBytes + float(1000)

calculate throughput based on packet size 1000 bytes

(set in configuration ’PACKET_SIZE’ = 1000)

numberOfPackets * 1052 = throughtput Bytes

throughput = numberOfBytes

throughput *= 8 # convert to bits

throughput /= 1000000 # convert to Megabits

throughput /= (float(row[1]))

#print("bytes: {} \n throughtput: {}".format(numberOfBytes, throughput))

print("{},{}".format(float(row[1]), throughput))

Bournemouth University, Department of Computing and Informatics, Final Year Project

72

The below code is run on the simulator. It simulates network topologies and the flow

specific information information.

//

// Network topology

//

// 10.0.0.x 192.168.1.x 10.2.0.x

// 10.0.0.1 10.0.0.2 192.16.1.1 192.168.1.2 10.2.0.1 10.2.0.2

//

// n0 -------------(n1/router) --------------- (n5/router)------------ n2

// n3 -------------() ()------------ n4

// n7 -------------() ()------------ n6

//

// 10.3.0.1 10.3.0.2 10.4.0.1 10.4.0.2

// 10.3.0.x 10.4.0.x

//

// 10.7.0.1 10.7.0.2 10.6.0.1 10.6.0.2

// 10.7.0.x 10.6.0.x

//

// - 3 Flows from n0, n3 and n7 using BulkSendApplication over BBR

// - Start and stopped at the same time

// - Tracing of queues and packet receptions to file "*.tr" and

// "*.pcap" when tracing is turned on.

//

// System includes.

#include <string>

#include <fstream>

// NS3 includes.

#include "ns3/core-module.h"

#include "ns3/point-to-point-module.h"

#include "ns3/internet-module.h"

#include "ns3/applications-module.h"

#include "ns3/network-module.h"

#include "ns3/packet-sink.h"

#include "ns3/ipv4-global-routing-helper.h"

using namespace ns3;

Bournemouth University, Department of Computing and Informatics, Final Year Project

73

// Constants.

#define ENABLE_PCAP false // Set to "true" to enable pcap

#define ENABLE_TRACE true // Set to "true" to enable trace

#define BIG_QUEUE 2000 // Packets

#define QUEUE_SIZE 100 // Packets

#define START_TIME 0.0 // Seconds

#define STOP_TIME 5.0 // Seconds

#define S_TO_R_BW "100Mbps" // Server to router BW

#define S_TO_R_DELAY "10ms"

#define DELAY_50 "50ms" // 50ms delay

#define R_TO_C_BW "100Mbps" // Router to client BW

#define R_TO_C_DELAY "0ms"

#define R_TO_R_BW "10Mbps"

#define R_TO_R_DELAY "0ms"

#define PACKET_SIZE 1000 // Bytes.

// Uncomment one of the below.

//#define TCP_PROTOCOL "ns3::TcpBbr"

//#define TCP_PROTOCOL "ns3::TcpNewReno"

//#define TCP_PROTOCOL "ns3::TcpCubic"

// For logging.

NS_LOG_COMPONENT_DEFINE ("main");

///

int main (int argc, char *argv[]) {

///

// Turn on logging for this script.

// Note: for BBR’, other components that may be

// of interest include "TcpBbr" and "BbrState".

LogComponentEnable("main", LOG_LEVEL_INFO);

// enable sript printing

CommandLine cmd;

cmd.Parse (argc, argv);

///

Bournemouth University, Department of Computing and Informatics, Final Year Project

74

// Setup environment

Config::SetDefault("ns3::TcpL4Protocol::SocketType",

StringValue(TCP_PROTOCOL));

// Report parameters.

NS_LOG_INFO("TCP protocol: " << TCP_PROTOCOL);

NS_LOG_INFO("Server to Router Bwdth: " << S_TO_R_BW);

NS_LOG_INFO("Server to Router Delay: " << S_TO_R_DELAY);

NS_LOG_INFO("Router to Client Bwdth: " << R_TO_C_BW);

NS_LOG_INFO("Router to Client Delay: " << R_TO_C_DELAY);

NS_LOG_INFO("Router to Router Bwdth: " << R_TO_R_BW);

NS_LOG_INFO("Router to Router Delay: " << R_TO_R_DELAY);

NS_LOG_INFO("Packet size (bytes): " << PACKET_SIZE);

// Set segment size (otherwise, ns-3 default is 536).

Config::SetDefault("ns3::TcpSocket::SegmentSize",

UintegerValue(PACKET_SIZE));

// Turn off delayed ack (so, acks every packet).

// Note, BBR’ still works without this.

Config::SetDefault("ns3::TcpSocket::DelAckCount", UintegerValue(0));

///

// Create nodes.

NS_LOG_INFO("Creating nodes.");

NodeContainer nodes;

// n0=source, n3=source#2, n7=source#3

// n1=router, n5=router#2

// n2=sink, n4=sink#2, n6=sink#3

nodes.Create(8);

///

// Create channels.

NS_LOG_INFO("Creating channels.");

NodeContainer n0_to_n1 = NodeContainer(nodes.Get(0), nodes.Get(1));

//NodeContainer n1_to_n2 = NodeContainer(nodes.Get(1), nodes.Get(2));

NodeContainer n3_to_n1 = NodeContainer(nodes.Get(3), nodes.Get(1));

NodeContainer n1_to_n5 = NodeContainer(nodes.Get(1), nodes.Get(4));

NodeContainer n5_to_n2 = NodeContainer(nodes.Get(5), nodes.Get(2));

Bournemouth University, Department of Computing and Informatics, Final Year Project

75

NodeContainer n5_to_n4 = NodeContainer(nodes.Get(5), nodes.Get(4));

NodeContainer n7_to_n1 = NodeContainer(nodes.Get(7), nodes.Get(1));

NodeContainer n5_to_n6 = NodeContainer(nodes.Get(5), nodes.Get(6));

///

// Create links.

NS_LOG_INFO("Creating links.");

// n0 to n1

int mtu = 1500;

PointToPointHelper p2p;

p2p.SetDeviceAttribute("DataRate", StringValue (S_TO_R_BW));

p2p.SetChannelAttribute("Delay", StringValue (S_TO_R_DELAY));

p2p.SetDeviceAttribute ("Mtu", UintegerValue(mtu));

NetDeviceContainer devices1 = p2p.Install(n0_to_n1);

// n3 to n1

p2p.SetDeviceAttribute("DataRate", StringValue (S_TO_R_BW));

p2p.SetChannelAttribute("Delay", StringValue (S_TO_R_DELAY));

p2p.SetDeviceAttribute ("Mtu", UintegerValue(mtu));

NetDeviceContainer devices2 = p2p.Install(n3_to_n1);

// n7 to n1

p2p.SetDeviceAttribute("DataRate", StringValue (S_TO_R_BW));

p2p.SetChannelAttribute("Delay", StringValue (S_TO_R_DELAY));

p2p.SetDeviceAttribute ("Mtu", UintegerValue(mtu));

NetDeviceContainer devices5 = p2p.Install(n7_to_n1);

//n1 to n5

p2p.SetDeviceAttribute("DataRate", StringValue (R_TO_R_BW));

p2p.SetChannelAttribute("Delay", StringValue (R_TO_R_DELAY));

p2p.SetDeviceAttribute ("Mtu", UintegerValue(mtu));

NS_LOG_INFO("Router queue size: "<< QUEUE_SIZE);

p2p.SetQueue("ns3::DropTailQueue",

"Mode", StringValue ("QUEUE_MODE_PACKETS"),

"MaxPackets", UintegerValue(QUEUE_SIZE));

NetDeviceContainer routers = p2p.Install(n1_to_n5);

// n5 to n2

Bournemouth University, Department of Computing and Informatics, Final Year Project

76

p2p.SetDeviceAttribute("DataRate", StringValue (R_TO_C_BW));

p2p.SetChannelAttribute("Delay", StringValue (R_TO_C_DELAY));

p2p.SetDeviceAttribute ("Mtu", UintegerValue(mtu));

NS_LOG_INFO("Router queue size: "<< QUEUE_SIZE);

p2p.SetQueue("ns3::DropTailQueue",

"Mode", StringValue ("QUEUE_MODE_PACKETS"),

"MaxPackets", UintegerValue(QUEUE_SIZE));

NetDeviceContainer devices3 = p2p.Install(n5_to_n2);

// n5 to n4

p2p.SetDeviceAttribute("DataRate", StringValue (R_TO_C_BW));

p2p.SetChannelAttribute("Delay", StringValue (R_TO_C_DELAY));

p2p.SetDeviceAttribute ("Mtu", UintegerValue(mtu));

NS_LOG_INFO("Router queue size: "<< QUEUE_SIZE);

p2p.SetQueue("ns3::DropTailQueue",

"Mode", StringValue ("QUEUE_MODE_PACKETS"),

"MaxPackets", UintegerValue(QUEUE_SIZE));

NetDeviceContainer devices4 = p2p.Install(n5_to_n4);

// n5 to n6

p2p.SetDeviceAttribute("DataRate", StringValue (R_TO_C_BW));

p2p.SetChannelAttribute("Delay", StringValue (R_TO_C_DELAY));

p2p.SetDeviceAttribute ("Mtu", UintegerValue(mtu));

NS_LOG_INFO("Router queue size: "<< QUEUE_SIZE);

p2p.SetQueue("ns3::DropTailQueue",

"Mode", StringValue ("QUEUE_MODE_PACKETS"),

"MaxPackets", UintegerValue(QUEUE_SIZE));

NetDeviceContainer devices6 = p2p.Install(n5_to_n6);

///

// Install Internet stack.

NS_LOG_INFO("Installing Internet stack.");

InternetStackHelper internet;

internet.Install(nodes);

///

// Add IP addresses.

NS_LOG_INFO("Assigning IP Addresses.");

Ipv4AddressHelper ipv4;

Bournemouth University, Department of Computing and Informatics, Final Year Project

77

ipv4.SetBase("10.0.0.0", "255.255.255.0");

Ipv4InterfaceContainer i0i1 = ipv4.Assign(devices1);

ipv4.SetBase("10.3.0.0", "255.255.255.0");

Ipv4InterfaceContainer i3i1 = ipv4.Assign(devices2);

ipv4.SetBase("10.7.0.0", "255.255.255.0");

Ipv4InterfaceContainer i7i1 = ipv4.Assign(devices5);

ipv4.SetBase("191.168.1.0", "255.255.255.0");

Ipv4InterfaceContainer i1i5 = ipv4.Assign(routers);

ipv4.SetBase("10.2.0.0", "255.255.255.0");

Ipv4InterfaceContainer i5i2 = ipv4.Assign(devices3);

ipv4.SetBase("10.4.0.0", "255.255.255.0");

Ipv4InterfaceContainer i5i4 = ipv4.Assign(devices4);

ipv4.SetBase("10.6.0.0", "255.255.255.0");

Ipv4InterfaceContainer i5i6 = ipv4.Assign(devices6);

Ipv4GlobalRoutingHelper::PopulateRoutingTables();

///

// Create apps.

NS_LOG_INFO("Creating applications.");

NS_LOG_INFO(" Bulk send.");

// Well-known port for server.

uint16_t flow1port = 911;

//uint16_t flow2port = 912;

// Source n0.

// first sending flow

BulkSendHelper source("ns3::TcpSocketFactory",

InetSocketAddress(i5i2.GetAddress(1), flow1port));

// Set the amount of data to send in bytes (0 for unlimited).

source.SetAttribute("MaxBytes", UintegerValue(0));

Bournemouth University, Department of Computing and Informatics, Final Year Project

78

source.SetAttribute("SendSize", UintegerValue(PACKET_SIZE));

ApplicationContainer apps = source.Install(nodes.Get(0));

// Source n3

// second sending flow

BulkSendHelper source2("ns3::TcpSocketFactory",

InetSocketAddress(i5i4.GetAddress(1), flow1port));

source2.SetAttribute("MaxBytes", UintegerValue(0));

source2.SetAttribute("SendSize", UintegerValue(PACKET_SIZE));

apps = source2.Install(nodes.Get(3));

// Source n7

// third sending flow

BulkSendHelper source3("ns3::TcpSocketFactory",

InetSocketAddress(i5i6.GetAddress(1), flow1port));

source3.SetAttribute("MaxBytes", UintegerValue(0));

source3.SetAttribute("SendSize", UintegerValue(PACKET_SIZE));

apps = source3.Install(nodes.Get(7));

apps.Start(Seconds(START_TIME));

apps.Stop(Seconds(STOP_TIME));

// Sink (at end nodes).

// sink for flow 1

PacketSinkHelper sink("ns3::TcpSocketFactory",

InetSocketAddress(Ipv4Address::GetAny(), flow1port));

apps = sink.Install(nodes.Get(2));

apps.Start(Seconds(START_TIME));

apps.Stop(Seconds(STOP_TIME));

Ptr<PacketSink> p_sink = DynamicCast<PacketSink> (apps.Get(0));

// sink for flow 2

PacketSinkHelper sink2("ns3::TcpSocketFactory",

InetSocketAddress(Ipv4Address::GetAny(), flow1port));

apps = sink2.Install(nodes.Get(4));

apps.Start(Seconds(START_TIME));

apps.Stop(Seconds(STOP_TIME));

Ptr<PacketSink> p_sink2 = DynamicCast<PacketSink> (apps.Get(0));

Bournemouth University, Department of Computing and Informatics, Final Year Project

79

// sink for flow 3

PacketSinkHelper sink3("ns3::TcpSocketFactory",

InetSocketAddress(Ipv4Address::GetAny(), flow1port));

apps = sink3.Install(nodes.Get(6));

apps.Start(Seconds(START_TIME));

apps.Stop(Seconds(STOP_TIME));

Ptr<PacketSink> p_sink3 = DynamicCast<PacketSink> (apps.Get(0));

///

// Setup tracing (as appropriate).

if (ENABLE_TRACE) {

NS_LOG_INFO("Enabling trace files.");

AsciiTraceHelper ath;

p2p.EnableAsciiAll(ath.CreateFileStream("

./results/top4-3v3-dumbbell/3v3-dumbbell-newreno.tr"));

}

if (ENABLE_PCAP) {

NS_LOG_INFO("Enabling pcap files.");

p2p.EnablePcapAll("shark", true);

}

///

// Run simulation.

NS_LOG_INFO("Running simulation.");

Simulator::Stop(Seconds(STOP_TIME));

NS_LOG_INFO("Simulation time: [" <<

START_TIME << "," <<

STOP_TIME << "]");

NS_LOG_INFO("---------------- Start -----------------------");

Simulator::Run();

NS_LOG_INFO("---------------- Stop ------------------------");

///

// Ouput stats.

// Flow 1

NS_LOG_INFO(" ");

NS_LOG_INFO("Flow1.");

NS_LOG_INFO("Total bytes received: " << p_sink->GetTotalRx());

double tput = p_sink->GetTotalRx() / (STOP_TIME - START_TIME);

Bournemouth University, Department of Computing and Informatics, Final Year Project

80

tput *= 8; // Convert to bits.

tput /= 1000000.0; // Convert to Mb/s

NS_LOG_INFO("Throughput: " << tput << " Mb/s");

// Flow 2

NS_LOG_INFO(" ");

NS_LOG_INFO("Flow2.");

NS_LOG_INFO("Total bytes received: " << p_sink2->GetTotalRx());

double tput2 = p_sink2->GetTotalRx() / (STOP_TIME - START_TIME);

tput2 *= 8; // Convert to bits.

tput2 /= 1000000.0; // Convert to Mb/s

NS_LOG_INFO("Throughput: " << tput2 << " Mb/s");

// Flow 3

NS_LOG_INFO(" ");

NS_LOG_INFO("Flow3.");

NS_LOG_INFO("Total bytes received: " << p_sink3->GetTotalRx());

double tput3 = p_sink3->GetTotalRx() / (STOP_TIME - START_TIME);

tput3 *= 8; // Convert to bits.

tput3 /= 1000000.0; // Convert to Mb/s

NS_LOG_INFO("Throughput: " << tput3 << " Mb/s");

// Done.

NS_LOG_INFO(" ");

NS_LOG_INFO("---------------- Destroy ------------------------");

Simulator::Destroy();

NS_LOG_INFO("Done.");

return 0;

}

Bournemouth University, Department of Computing and Informatics, Final Year Project

81

Figure 1: Original plan time sheet

Bournemouth University, Department of Computing and Informatics, Final Year Project

82

Figure 2: Updated time sheet

Bournemouth University, Department of Computing and Informatics, Final Year Project

